Performance Analysis of Kalman Filter Based Hybrid Estimation Algorithms

نویسندگان

  • Chze Eng Seah
  • Inseok Hwang
چکیده

Kalman filter based hybrid estimation algorithms have been used in many applications. However, performance analysis of these algorithms is difficult because many of these algorithms use a set of Kalman filters that are coupled with each other. We present an algorithm to compute the means and cross-covariances of the residuals of the set of coupling (or interacting) Kalman filters. Specifically, we derive the cross-covariances, each of which is the covariance of the residuals of two interacting Kalman filters, to account for the mutual interactions between the Kalman filters. From the means and cross-covariances of the Kalman filter residuals, we then compute the means of the likelihood functions and the mean-squared estimation errors as performance measures of hybrid estimation algorithms. We consider the Interacting Multiple Model algorithm as an example in this paper. In general, the proposed algorithm could be applicable to various Kalman filter based hybrid estimation algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study

One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...

متن کامل

A New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant

This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT) and extended Kalman filter (EKF). Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter...

متن کامل

An Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine

Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...

متن کامل

Adaptive Fusion of Inertial Navigation System and Tracking Radar Data

Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...

متن کامل

Channel, Phase Noise, and Frequency Offset in OFDM Systems: Joint Estimation, Data Detec- tion, and Hybrid Cramér-Rao Lower Bound

Oscillator phase noise (PHN) and carrier frequency offset (CFO) can adversely impact the performance of orthogonal frequency division multiplexing (OFDM) systems since they can result in inter carrier interference and rotation of the signal constellation. In this paper, we propose an expectation conditional maximization (ECM) based algorithm for joint estimation of channel, PHN, and CFO in OFDM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008